
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chemical Solutions (aqueous = water is the solvent) Types of vessels (least to most precise): - Beaker - Erlennmeyer flask - Graduated cylinder

\qquad
\qquad
\qquad
\qquad

- Erlennmeyer flask \qquad
\qquad
\qquad

DEFINITIONS: \qquad

- SOLUTES -- substances that are dissolved (Miracle Grow) \qquad
- SOLVENTS -- substance in which solutes \qquad are dissolved (water)
- CONCENTRATION -- the amount of solute divided by the amount of solvent. How much Miracle Grow is in the water?
*How strong is the Kool-Aid?

Facts of Life

- Mass is measured in Grams, $\mathrm{mg}, \mathrm{\mu g}$ $1 \mathrm{~g}=1000 \mathrm{mg}=1,000,000 \mu \mathrm{~g}$
- Volume is measured in liters, $\mathrm{mL}, \mu \mathrm{L}$
\qquad $1 \mathrm{~L}=1000 \mathrm{~mL}=1,000,000 \mu \mathrm{~L}$
- Density of water is $1 \mathrm{~g} / \mathrm{mL}$
- Concentration is expressed in many ways:
\qquad
- 1. percent
- 2. $\mathrm{mg} / \mathrm{mL}$ \qquad
- 3. molar
- 4. " X " solution

Each star represents 1 mg of NaCl .
What is the total amount of NaCl in the tube?
What is the concentration of NaCl in the tube (in mg
mL)?
\qquad
\qquad
?

Percent Solutions

- Per means "for every one"
- Cent means 100
- Example: a 5% miracle grow solution has \qquad 5 grams of solute for 100 g of solution
$5 \mathrm{~g} \quad 100 \mathrm{~g}$ of water $=100 \mathrm{~mL}$
100 mL The solution is mostly water

Germination Lab:
Make 100 mL of a 5% Miracle Grow
solution
$5 \mathrm{~g} / 100 \mathrm{~g}=5 \mathrm{~g} / 100 \mathrm{~mL}$
because the density of water is $1 \mathrm{~g} / \mathrm{mL}$
Use 5 g of Miracle Grow and
bring to a volume of (BTV)
100 mL with water

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Diluting Solutions

Formula:
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$

Concentration ${ }_{1} \times$ Volume $_{1}$
$=$
Concentration ${ }_{2} \times$ Volume $_{2}$

Germination Lab: 3.75\% solution

Solution 1 is 5% Miracle Grow (stock solution)
Solution 2 is 3.75% Miracle Grow (what you want)

How do you make 10 mL of 3.75\% Miracle Grow \qquad solution?
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$

- $(5 \%)(?)=(3.75 \%)(10 \mathrm{~mL})$ \qquad
- ? = 7.5 mL of Solution 1
- How much water do you use to make 10 mL ?
- Add 2.5 mL water to $7.5 \mathrm{~mL} 5 \%$ stock solution!

Germination Lab: 2.5% solution
- Solution 1 is 5% Miracle Grow (stock solution)
- Solution 2 is 2.5% Miracle Grow (what you want)
- How do you make 10 mL of 2.5% Miracle Grow
solution?
- $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
- $(5 \%)(?)=(2.5 \%)(10 \mathrm{~mL})$
- ? $=5 \mathrm{~mL}$ of Solution 1
- How much water do you use to make 10 mL ?
- Add 5 mL water to $5 \mathrm{~mL} 5 \%$ stock solution!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Add 5 mL water to $5 \mathrm{~mL} 5 \%$ stock solution!

Germination Lab: 1.25\% solution

\qquad

- Solution 1 is 5% Miracle Grow (stock solution)
- Solution 2 is 1.25% Miracle Grow (what you want) \qquad

How do you make 10 mL of 1.25% Miracle Grow
\qquad solution?

- $C_{1} V_{1}=C_{2} V_{2}$
(5\%) (?) $=(1.25 \%)(10 \mathrm{~mL})$ \qquad
- ? $=2.5 \mathrm{~mL}$ of Solution 1
- How much water do you use to make 10 mL ?
- Add 7.5 mL water to $2.5 \mathrm{~mL} 5 \%$ stock solution!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

