AP[®] BIOLOGY 2007 SCORING GUIDELINES

Question 1

Membranes are essential components of all cells.

 (a) Identify THREE macromolecules that are components of the plasma membrane in a eukaryotic cell and discuss the structure and function of each. (6 points maximum; 1 point for each macromolecule + structure, 1 point for each macromolecule + function)

NOTE: Only first three molecules mentioned will be scored.

Macromolecule	Structure	Function (must match selected macromolecule)
Phospholipids OR Lipid with phosphate	 Glycerol, two fatty acids, and polar head group w/phosphate 	Selectively permeableFluidity
	 Amphipathic Hydrophilic or polar (head) and hydrophobic or nonpolar (tails) Forms a lipid bilayer 	 Creates compartment/ separates cell from environment; barrier Signals, inositol pathway (IP3) diacylglycerol (DAG)
Cholesterol	 Ring structure Steroid Amphipathic Embedded in bilayer 	Moderates fluidityStabilizes membrane
Proteins OR <u>The following specific types</u> <u>must indicate that they are</u> <u>proteins</u> Integral Peripheral Pump Receptor Transport Recognition Tight junction Desmosomes Gap junctions Integrins Enzyme Channel	 <u>General Structure</u> Polypeptides; amino acids 2°, 3°, 4° structure description <u>Specific Structure</u> Integral, transmembrane, embedded; forms a channel Peripheral, on surface Structure fit to substrate or ligand 	 Transport Enzyme, catalysis Signal transduction Attachment: extracellular matrix (ECM)-cytoskeleton Recognition Cell junction
Glycolipid/Glycoprotein	Carbohydrate (chains) linked to lipid/protein	 Cell recognition Attachment to external molecule or another cell

© 2007 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP[®] BIOLOGY 2007 SCORING GUIDELINES

Question 1 (continued)

(b) **Explain** how membranes participate in THREE of the following biological processes: (6 points maximum; 2 points maximum per section)

Muscle contraction

- Motor neuron or axon terminal releases neurotransmitter or acetylcholine (ACh)
- ACh binds to receptors
- Depolarization or Na⁺ moves in through membrane channels or membrane depolarizes
- Action potential propagates along cell membrane (sarcolemma) or T tubules
- Depolarization changes permeability of sarcoplasmic reticulum (SR) or Ca²⁺ released from SR
- Ca²⁺ active transport into SR (reuptake of Ca²⁺)
- Repolarization or maintenance of membrane potential (Na⁺/K⁺ pump)
- Smooth or cardiac muscle gap junctions directly transfer membrane potential between cells

Fertilization of an egg

- Part of the acrosomal reaction or sperm acrosome releases hydrolytic enzymes (by exocytosis)
- Sperm binds to receptors on egg
- Fusion of sperm and egg plasma membranes
- Change in membrane electrical charge or fast block (depolarization) to prevent further fertilization (polyspermy)
- Cortical reaction or slow block by exocytosis (prevents polyspermy) or "hardening" of membrane
- Separation of fertilization membrane (envelope)
- Fusion of egg and sperm nuclear membranes or nuclei

Chemiosmotic production of ATP

- Electron transport chain (ETC) in membrane pumps H⁺ across membrane
- H⁺ gradient established across membrane
- H⁺ move through ATP synthase embedded in membrane to produce ATP
- Membrane infolding increases surface area

Intercellular signaling

- Release of chemical signals by exocytosis
- Receptors in membrane bind ligands or chemical signals or chemical signals pass through the membrane (examples: neurotransmitters, hormones, pheromones)
- Ligand-gated ion channels opening/closing
- Cascade of cellular events, including enzymatic reactions and second messengers (examples: G-proteins, cAMP, IP₃, Ca²⁺)
- Antibodies activate immune function
- Descriptions of gap junctions, plasmodesmata (communicating junctions)