AP[®] BIOLOGY 2009 SCORING GUIDELINES

Question 1

An experiment on a species of small freshwater fish recorded their behavioral responses to different temperatures. Ten fish were each tested once, one at a time.

To begin the experiment, a fish was removed from a stock tank (maintained at 22°C) and placed in the temperature-gradient tank drawn below. After the fish had spent 30 minutes in the temperature-gradient tank, the section where the fish was located was recorded. Additional observations were recorded every 5 minutes, for a total of 7 observations per fish. A summary of the combined data for all 10 fish appears below.

Section A Section B Section C Section D Section E

Section	Fish/Section
А	9
В	11
С	34
D	12
E	4

(a) On the axes provided, **construct** the appropriate type of labeled graph showing the relationship between water temperature and fish distribution. **Summarize** the outcome of the experiment. (4 points maximum)

Graph	Summarize
(1 point each; 3 points maximum for graph)	(1 point maximum for summary)
 Correctly labeled and scaled axis Temperature range may be indicated by section with legend Correct orientation: <i>x</i>-axis = temp; <i>y</i>-axis = # fish observed Correct bar graph/scatter plot Discrete data points only if range is indicated NO point for line graph 	 Fish were distributed by temperature, e.g., most fish were observed at moderate temperature range, or 12–17°C

AP[®] BIOLOGY 2009 SCORING GUIDELINES

Question 1 (continued)

(b) Identify TWO variables that were not specifically controlled in the experimental design, and describe how these variables might have affected the outcome of the experiment. (4 points maximum)

Variable*	Describe					
(1 point each; 2 points maximum)	(1 point each; 2 points maximum)					
Fish characteristics, e.g., age, size, sex,	Age/mating behavior/sex, SA:V ratio,					
schooling, health	tendency to school may affect activity					
	levels/distribution of fish					
Tank characteristics, e.g., depth, shape,	Depth/shape/size/pressure/ends of tank may					
size, gravel, plants, sections/ends	affect distribution of fish "control" tank at					
	constant temperature					
Water quality, e.g., pH, salt, chemicals,	Attraction/avoidance influences fish					
microbes	response to temperature					
Placement of fish, time in stock tank	Tendency of fish to remain where placed,					
	effect of shock on fish					
External stimuli, e.g., light, noise	Attraction/avoidance influences fish					
	response to temperature					
Oxygen concentration	Attraction/avoidance influences fish					
	response to temperature					
Time of day/biological rhythms or when	Temperature preference or activity of fish					
observations recorded	differs with time of day, e.g., diurnal vs.					
	nocturnal					
Other acceptable variables**	Other acceptable descriptions					

* 1 point for **each** variable, may include two from same category

** NOT type of fish, NOT temperature, since these were set by experimenters

(c) **Discuss** TWO ways that water temperature could affect the physiology of the fish in this experiment. (**4 points maximum**)

Effect (directional)	Explanation of effect
(1 point each; 2 points maximum)	(1 point each; 2 points maximum)
Metabolic rate/activity increase with temperature increase	Related to kinetic energy, enzyme activity (NOT denaturation)
Heart rate/circulation/blood flow increase with temperature increase	Related to kinetic energy, blood vessel constriction/dilation, etc.
Respiration rate, operculum movement, "breathing rate" increase with temperature increase	Related to diffusion rates, metabolic rates
Shock/stress prevent normal activity	Nervous system impairment alters fish movements
Gas exchange (O ₂ or CO ₂) altered at different temperatures	Dissolved oxygen increases at lower temperatures

IA,

ADDITIONAL PAGE FOR ANSWERING QUESTION 1 ONP that was not controlled vanable War pressure It there were, ssuper arec in ex theme 2 A ang th m partially have -fip ar coun red for esser istri bution nose areas tish ne would DVI 01 the WITH ama the amor noma moni essurp mt 10 was the sol foiled tP 0 water 7 vp colute was present MO the ends tank. the tho thes chunth R sh G LA n reve 50 an nu would 0 ith 0 NOV unt 801 MQ Se. mper water +6 mak a P 2 NP energy aveator more in the nis lead Sections mperat could the ninds hoavt VA OZno Fish for increase. increa 2 0 61000 nutrients O the ceils fish 0 the akp 15 would exchange through counter rrent oth WOW -04 1 ·Q tr 1115 20 increa end cellul to CPD 101 C ·a which means more A FOr the P-154

IAZ

ADDITIONAL PAGE FOR ANSWERING QUESTION 1 to JAGE THEFT have energy to swim through heated waters the Increased hear rate also would provide fo incre ase in the overa an NEAVOS tem OF the ATT 31

1A3

IB,

132 ADDITIONAL PAGE FOR ANSWERING QUESTION 1 toxin or chemical repelled them from another section For example, pollution or higher calt concentration howe ohin may fish from certain sections, away Light was amples had ne hell introlled wit Cerhin hish may pretur daller conditions Repues 12 others which inburch here ma ne Section the locat igner ne interfor of num he coperiment (terportire) (a) Colder higher water hers 100000 a σf concerhom dissolved Cerkin Lish such need cold OXYGEM. as trout. for water 155 Oxygen Supply. El Das when cannot Jarm hold as much Olgo Oxygen ent an unsvitable Derebore is habitut hi Ga Fish Certa in Rea habits The reflect oxygen needs in he heir and the second temperature of he water. Water temperative also impacts ne maintena of to he internel body homeostasis report 1 temperative 94 hish . Cather It requires the energy OF an organism. If an organism lives in HTP heat Cild bo it will ATP al therefore more white USE more every This offer lequiles an increased herting itself. of celle refe produce HAR ATP, Mich uses glucose respiration 6 as ar orranic moleule convert to ATP (every 6 . Fish :iste take in more food to mist, also supph femoisture the increas rate of respiration -Warmer lesis cellular ercites weter

of a	nce	d ho,	ADDITIONAL	PAGE	FOR ANS	WERING	G QUEST	TION 1	u d	1 B3
.255	ATP	hetin	s itself.	\$0	Hower	er, it	- he	wa	ter is	hou
Whrm	it	may	denative	ch	rynes	ad	disr	upt	honcosk	sis.
							V			
					Control of					
				-						
										4-
							- Hereitkower			
				1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-						
				1111-1-1-00-00-00-			_			

1

ADDITIONAL PAGE FOR ANSWERING QUESTION 1

However, some variables may not have been specifically controlled
in the experimental design. There was no mention of controlling variables
such as light and fish speares. The presence of varying light in
different sections of the tank could influence the fish's taxis
and preference. Certain fish may be more inclined to approach lighted
areas or darker regions. The specie of fish also reflects an issue.
Though all ten fish used in the experiment are "small freshwater fish,"
there can still be room for variations based on more specific types
of fish Different species of fish would have different preferences in
terms of water temperature. Some fish prefer the surface of the
water in the wild while others prefer deeper zones. Thus, an controll
variables such as light and fish speere may tamper with an
accurate outcome of the experiment, especially if there had been a
high amount of a certain specie but a low quantity of another. If
light had been brighter on Section C, perhaps that is why most
fish had been observed there. The experiment heavily relies on the
consistences of these variables and the individuality of the fish.
These particular fish demonstrate a sense of physiology as they
purposefully move toward a preferred water temperature. Though some
movements may be the result of Kinesis, unintentional movements, it
is assumed that the data collected reflects positive taxis in movement
to a preferred region of the tank. These fish had been previously
contained in a stoch tank maintained at 22°C with no choice on
how warm the water would be. Once placed in the temperature-
gradient tank, they were free to find the region most suited to
them. Being ectothermic animals, the fish position thomselves in an

ADDITIONAL PAGE FOR ANSWERING QUESTION 1

103

avea of	des	ived	tempe	warture	to	Mah	taih	ad	lesited	body	temperatur
Each fish	moved	5	the	Section	1	where	they	pera	<i>terved</i>	to be	most
Comforta bl	e to	their	· fi	Inctionin	ng.	As	most	of	the	fish	were
observed	ih	section	n C,	it	can	be	concl	used	that	most	Small.
fresh water	fish	have	a	physiol	gy	that		shows	they	prefer	temperatur
between	12°C	and	17°C.								
										eren ar andra	
		а.,									
		27									
										9	
						-				and the second second	
	i di conserva	3									
7/ 											
	_	2.11.1		-							
4- 											
2 K				1.000		-		•			
		e.									

AP[®] BIOLOGY 2009 SCORING COMMENTARY

Question 1

Overview

The understanding of experimental design and the analysis of numerical data underlie the development of scientific knowledge, including our understanding of the physiology and behavior of animals. In the setting for this question, behavioral observations of a particular species of fish showed that the fish were most likely to be observed in the water at $12-17^{\circ}$ C, with fewer fish found at temperatures higher or lower than this range. Students were asked to graph the relationship between water temperature and fish distribution and to summarize the data. They were then asked to identify and describe two specific variables that were not controlled in the original experiment and to discuss two ways that temperature could affect the physiology of the fish in the experiment.

Sample: 1A Score: 10

In part (a) an ideal graph is constructed, properly labeled, oriented, and scaled, showing a temperature range for each section and a correct bar graph. The response summarizes that the "greatest number of fish was found in Section C, $12^{\circ}C-17^{\circ}C$ " and adds that "[t]he overall distribution was like a bell curve." The response earned the maximum of 4 points in part (a).

In part (b) the response identifies pressure as the variable, earning the point for tank characteristics, and describes the effect it has on fish distribution: "The fish would probably go to the area with the average amount/normal amount of pressure." The second variable identified is solute in the water, earning the point for water quality. A correct description of the effect, "[i]f more solute was present towards the ends of the tank, the fish . . . may not want to be there," earned 1 point.

For part (c) the response clearly provides an indication of the direction of temperature change. "Higher water temperature could make the fish need more energy. . . . [T]he heart rate of the fish could increase, . . . and . . . the fish would take in more O_2 through countercurrent exchange of its gills." The explanation states that both "lead to increased cellular respiration." Thus the response earned 1 point for each effect and 1 point for the explanation, receiving the maximum of 4 points in part (c).

Sample: 1B Score: 8

In part (a) an ideal graph is constructed, properly labeled, oriented, and scaled, showing a temperature range for each section and a correct bar graph. The response summarizes the data, stating that "[t]he fish tended to locate in the temperature range of 12–17°C," earning the maximum of 4 points in part (a).

In part (b) the response identifies the variable "content of the water was not controlled." The response elaborates on water content, identifying nutrients, toxin, chemical, pollutant, and salt concentration, earning 1 point for identification of the water quality variable and a second point for describing the effect of the variable on fish distribution in the tank: "may have driven fish away from certain sections." A second variable, light, is identified, and the student states correctly that it "may have influenced the section they located to." The response earned the maximum of 4 points in part (b).

In part (c) the response correctly describes cold water as having a higher dissolved oxygen concentration but never relates oxygen content to fish physiology. The discussion of cellular respiration generating heat ("If an organism lives in cold water it will use more ATP and therefore more energy in heating itself") is an incorrect statement for ectotherms and did not earn points.

AP[®] BIOLOGY 2009 SCORING COMMENTARY

Question 1 (continued)

Sample: 1C Score: 6

In part (a) an ideal graph is constructed and properly labeled, oriented, and scaled, showing a temperature range for each section and a correct bar graph. The response summarizes the data, "most fish prefer Section C, which contains water between 12°C and 17°C," earning the maximum of 4 points in part (a).

For part (b) the response earned 2 points: 1 point was earned for identifying light as a variable. The experiment was on a given species of small, freshwater fish, therefore "species of fish" was not acceptable as an uncontrolled variable. The response earned a description point for the statement, "The presence of varying light in different sections of the tank could influence the fish's taxis and preference."

In part (c) no points were earned because the response discusses fish intention rather than physiological effects.